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Abstract. The present paper deals with a new type of eigenvalue problems arising in problems 
involving nonconvex nonsmooth energy functions. They lead to the search of critical points (e.g. 
local minima) for nonconvex nonsmooth potential functions which in turn give rise to hemivaria- 
tional inequalities. For this type of variational expressions the eigenvalue problem is studied here 
concerning the existence and multiplicity of solutions by applying a critical point theory appropriate 
for nonsmooth nonconvex functionals. 
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1. In troduct ion  

Nonconvex and possibly nonsmooth energy functions in boundary value problems 
in Mechanics and Engineering lead to new types of variational expressions called 
hemivariational inequalities. Their solution characterizes the equilibrium of the 
problem studied in steady case problems, whereas in dynamic problems the evo- 
lution of the phenomenon. The theory of hemivariational inequalities is closely 
related with the search of local critical points (e.g. minima or maxima) for non- 
convex, nonsmooth energy functions. These points are called substationary points. 
Indeed under certain very general assumptions the two problems, i.e. search for 
solutions of a hemivariational inequality and search for local minima or maxima of 
the corresponding energy are equivalent. In the case of convexity, a hemivariation- 
al inequality reduces to a variational inequality, and the search for a local critical 
point to the search for a global minimum. 

The theory of hemivariational inequalities has been introduced and developed by 
the work of E D. Panagiotopoulos in Mechanics [1]-[5] concerning the derivation 
of variational "principles" for problems involving nonconvex nonsmooth energy 
functions. We refer to [3] for all related references and to [4], [5] concerning 
the largest area of Nonsmooth Mechanics. Mathematical questions concerning the 
existence of solutions of hemivariational inequalities have been treated in [2], [3] 
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by means of compactness arguments and by Z. Naniewicz in [6]-[8] by means of 
pseudomonotonicity arguments for multivalued mappings. In this respect see [9]. 

Here we study the corresponding eigenvalue problem. To this end we apply 
a critical point approach appropriate for nonconvex nonsmooth functionals. This 
approach extends the approach due to D. Motreanu and E D. Panagiotopoulos [10] 
and to D. Motreanu and Z. Naniewicz [11]. 

It is well-known that the solution of an eigenvalue problem is closely connected 
with the stability analysis of the corresponding physical system. Having here in 
mind problems of elasticity or generally of engineering (adhesively connected 
von Kftrrn~n plates) and problems of economics (network flow problems cf. [9]) 
leading to hemivariational inequalities, for which either the solution remains a 
priori bounded, or the cost or the weight of the structure are prescribed we have 
studied the corresponding eigenvalue problem on a sphere 

s ={u�9 , > 0  

in a real Hilbert space V. The proof followed here takes into account the geometry 
of the sphere S~. In Section 2 the existence of the solution is investigated. Section 3 
deals with the multiplicity of solutions and Section 4 describes certain applications 
of the method concerning constant weight or cost problems. 

2. The Existence Result 

Let V be a real Hilbert space, with the scalar product (., ")v and the associated 
norm [I " IIv, which is densely and compactly imbedded in LP(~2;~ N) for some 
p >/ 2, an integer N /> 1 and a bounded domain f~ in ~m, m /> 1. The pairing 
over V x V* is denoted by ('}v. The Euclidean norm in any Euclidean space R N 
is denoted by I " I and the pairing over ~N X (RN) * by (., "}~N. 

In the space V we consider the sphere Sr of center 0 and radius r > 0, i.e., 
[[u[]v = r, regarded as a Riemannian manifold with the Riemannian structure 
induced by the Hilbert space V. The (geodesic) distance on Sr is denoted by d(., .),  
that is, for the points u, v E S~, d(u, v) is equal to the length of the minimal arc of 
the great circle on S~ joining u and v. 

Since V is continuously imbedded in LP(f~; ~N), there is a constant co > 0 
such that 

IlvllL  collv[Iy, v e y .  (1) 

Let a : V x V -+ ~ be a continuous symmetric bilinear form, let C : S~ -+ V* 
a compact (nonlinear) mapping (in the sense that the closure of the range C(ST) 
of C is compact in V*) and let j : f~ x R N --+ ~N be a Carathrodory function, 
locally Lipschitz in the second variable and with j( . ,  0) bounded on fL We denote 
by A : V -~ V* the operator which corresponds to the bilinear form a, 

(Au, v}v = a(u, v), u, v E V .  
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For the sake of simplicity we denote Clarke's [ 12] generalized gradient 0y j (x, y) 
of j with respect to the second variable simply by Oj(x, y). The same convention 
will be used relative to Clarke's generalized directional derivative j~ y; z). For 
any other locally Lipschitz real-valued functional G, the notations OG and G o 
will always designate the generalized gradient and the generalized directional 
derivative, respectively. 

This Section deals with the following eigenvalue problem with constraints: Find 
u E V and A E ]R such that the two relations below (2), (3) hold 

a(u, v) + (C(u), v>y + [ j~ u(x); v(x)) dx ) A(u, v)v, 
Yf~ 

Ilullv = r. 

The following hypotheses are imposed: 

v E Is', (2) 

(3) 

(H1) j satisfies the growth condition 
[w[ ~< c(1 + [yiP-X) forall  

with some constant c > 0. 
wEOj(x,y),  x E a ,  y E R  N, 

(H2) There exists a (Fr6chet) differentiable function 9 : V --+ ]R and a lower 
semicontinuous (1.s.c.) on S~ function h : V ~ IR such that 

(C(u), v)v ) (9'(u), v)v + h(u + v) - h(u) (4) 
for all u E S~ and v E T~Sr; 

g(u)  -~ h(U) ) r U E Sr, (5) 
for a constant ca; 

h(exp~(tv)) ~< (1 - 0 h ( u )  + th(u + v), (6) 
fo ru  E S~,v E T~S~ and0 < t < 1. 

(H3) For every sequence {un} C Sr with u~ --+ u weakly in V, a(un,  u~) + 
(C(u~), u~)v --+ a0 E R, and for every w E LP/(P-1)(Ft;R N) with 

w(x) E Oj(x,u(x)) fora.e, x E a (7) 
such that (A - AoA)u~ converges in V*, where 

Ao:=r-2(ao+~(w(x) ,u(x))aNdx),  

there exists a strongly convergent subsequence of {Un} in V (thus in S~). 

In the statement of hypothesis (H2), the notation T~ Sr means the tangent space 
of Sr at u E S~, thus 

TuS  = {v E V = 0 ) .  (8) 

The notation exp~ in (6) denotes the exponential mapping (in the sense of Rieman- 
nian manifolds) of S~ at u E S~, expu : T~,oc~ --+ S~, given by 

exp~(v) = 7~(1), v E T~,S~, (9) 
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where the curve 7"(t) in (9) stands for the unique geodesic (arc of a great circle) 
of S~ satisfying 

= -y'~(0) 7~(0) u ( i fv  E T~Sr) and = v. 

The mapping A : V ~ V* of (H3) represents the duality mapping 

(A~, v)v = (~, v)v, u, ~ E V. 

Now we are in the position to formulate our existence result for the eigenvalue 
problem (2), (3). 

THEOREM 1. Under hypotheses (H1)-(H3) the eigenvalue problem (2), (3) admits 
a solution (u, A) E V x R (u E Sr) with 

~ :  r -2 (~(~, ~) + (c(~),~)v + f <~(~), u(x))~ dx) 

for certain w E LP/(P-1)(fl; ]R N) satisfying (7). 
Proof. By (H1) and Lebourg's mean value theorem (see Clarke [12], p. 41) one 

obtains that j verifies the following growth condition 

IJCx,y)I <~ Ij(x,O)l + I j ( x , y ) -  j(x,O)l 

~< IjCx,O)l + (sup{Iwl : w E cOj(x,~/),~/E [O,y]})lyl 

~< l/(x,0)l  + c(lYl + lYl p) 
<<. c2 + c3lyl p, Vx E f~, y E ]R N, (10) 

with positive constants c2 and c3. 
We introduce the functionals J : LP(f~; R N) ~ ~ by setting 

f j(x,v(x))dx, vE L~(~;RN), (11) J(v) 

E : V ~ ]~ by setting 

E(v) = (1 /2)~(v ,v)  + g(v), v E V (12) 

and I : V ~ R by setting 

I = E + JIv + h. (13) 

From (1), (5) and (10) we see that I is bounded from below on S~ 

I(u) /> -(1/2)11,~1111ull~ + g(u) + h(u) - c21~1- c311ull~ 
>/ -(1/2)llc~llr 2 + cl - c2If~l - c3c~r p, u E S~. (14) 

By (14) and because the functional I defined in (13) is 1.s.c. we can apply to I 
the Ekeland's variational principle on the complete metric space S~ (see Ekeland 
[131). Then there exists a sequence {u~} C S~ such that 

1 
I(u~) <~ inf I § - (15) 

Sr ?Z 
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and 

I(w) ) I ( u ) - ( 1 / n ) d ( w , u ~ )  

If we set 

w = e x p ~ , ( t v )  with t > 0  

inequality (16) becomes 

167 

for each w E S t .  (16) 

and v E T~S~, 

E ( e x p ~  (tv)) - E(un) + J ( e x p ~ ( t v ) )  - J(un) + h(expu ~ (tv)) - h(u~) 

>~ -(I/~)d(exp~n(t~), ~), 
or, in view of (6), 

E(exp~( tv) )  - E(u~) + J(exp~(tv))  - J(u~) + t(h(u,~ + v ) -  h(u~)) 

>>. - (1 /n)d(exp~( tv ) ,  u~), (17) 

forv  E Tu~ Sr and t > O. 
We recall the following properties for the exponential mapping exp~ : T~,~ S~ 

S~ 

d(expu,~(tv))lt= o = v, v E T~Sr ,  (18) 

d(exp~,~(tv), un) = Iltvllv = tllvllv (19) 

for v E T~n S~ and t > 0 sufficiently small. 
Dividing by t > 0 and letting t --+ 0 in (17) we obtain that 

~ ( ~ ,  ~) + (g'(~), v>v + h ( ~  + v) - h (~ )  + S0(~, ~) 
>~ -(1/n)[Ivi[v for all v E Tu,~Sr. (20) 

To write (20) we made use of the differentiability of the functional E in (12), the 
definition of J~ v) and formulas (18), (19). From (20) and (4) we then derive 
that 

a ( u ~ , v ) + ( C ( u ~ ) , v l v +  J~ vET~,S~.  (21) 

Notice that the left-hand side of (21) is continuous, convex with respect to v E 
Tun Sr and vanishes at 0. Consequently, Lemma 1.3 in Szulkin [14] can be applied 
in the tangent space T~S~. It yields an element z~ E (T~S~)* of norm ~< 1 
verifying 

a(u~ ,v )+  (C(u~) ,v )v+ S~ >>. (1/n)(z~,v}v,  v E r ~ s ~ .  (22) 

Applying Hahn-Banach theorem one obtains an element (denoted again by z~) in 
V* with 

I]z~llv, < 1 (23) 
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so that (22) remains true (on T ~  St). 
The density of V in LP(Ft; IR N) implies (cf. Chang [15], Theorem 2.2) 

O(Jlv)(u) c OJ(u), u E V. (24) 

Then from (22) and (24) one finds an element 

w~ E OJ(u~), n )  1 (25) 

satisfying the equality 

(Au~ + C(u~) + wn - (1/n)z~,  v)v  = O, v C T~nS~. (26) 

By (26) and the characterization of the tangent space T~. S~ (see (8)) there exist 
numbers 3,~ E ]R such that 

Au~ + C(un) + wn - (1/n)zn = AnAu~, n >/1. (27) 

The boundedness of {un} C 5:~ ensures the existence of a subsequence again 
denoted by {u~} such that 

u~ --+ u weakly in V, 

u~ --+ u strongly in LP(f/; RN), 

{C(un)} is strongly convergent in V*, 

O!(Un, Un) "~ ( C ( ~ n ) ,  Un>V -"+ 0~0 e ]~. 

(28) 

(29) 

(30) 

(31) 

Here we used also the compactness of the imbedding V C LP(fh R N) and of the 
mapping C : Sr ~ V*. Since the functional d in (11) is locally Lipschitz on 

R ), relations (25) and (29) imply that the sequence {wn} is bounded in Lp(~; N 
LP(~; ]RN). According to the compact imbedding V* C LP/(P-1)(~; IR N) we may 
suppose that for some w E V* one has 

w~ ~ w strongly in V*. (32) 

The upper semicontinuity of the generalized gradient OJ (cf. Clarke [12], Propo- 
sition 2.1.5 (b)) and relations (29), (25) imply that 

w E OJ(u). (33) 

We note that the growth condition (H1) is just Hypothesis B in [12], p. 83, so it 
is allowed to apply Theorem 2.7.5 of [12]. It follows that (33) implies (7). 

By scalar product multiplication of (27) with u~ one obtains 

a ( u , ,  u~) + (C(un) + w~ - (1 /n ) z~ ,u~)y  : )~n/'2, 
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This equality and relations (31)-(33), (23), (28) show that 

Ao := r-2 (~o + /a(w(x),u(x))~Ndx ) , a s n - - + ~ .  (34) 

Furthermore, from (27), (30), (32) and (23) we get that 

{Au~ - )~nAun} converges in V ~. (35) 

Combining (34), (35) we conclude that {(A - ),0A)u~} converges in V*. This fact 
together with (31), (33), (7) permit us to apply hypothesis (H3). We arrive at the 
conclusion that along a subsequence 

us --+ u strongly in V, (36) 

with u E S~. 
Passing to the limit in (15) we see that 

lim I(u~) = inf I .  (37) 
?7,---+00 S r  

The lower semicontinuity of h on S~ and relations (36), (37) enable us to write 

h(u) <<. lim infh(u~)  = 
n---+ o o  

i n f I -  E(u)- J(u), 
S~. 

and therefore 

I (u)  = inf I .  (38) 
S~ 

Due to (38) we may write that 

0 ~< [ ( e x p ~ ( t v ) ) - I ( u )  

= E(exp~(tv)) - E(u)  + J ( exp~( t v ) ) -  J(u) + h(exp~(tv)) - h(u), 

v E T~S~ and t > O, 

or, by (6), 

t - l (E(exp~( tv ) )  - E(u))  + t - l ( j (exp~( tv ) )  - J(u)) + h(u + v) - h(u) 

>10. 

Letting t --+ 0 in the foregoing inequality we derive by means of (18) that 

a(u, v) + (C(u),  v )v  + J~ v) ) 0, v E T~S~. (39) 

Relation (39) can be written in the inclusion form 

- ( d u  + C(u))]ruS~ E O(gls,)(u). 
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This is equivalent to the existence of some w E V* satisfying (33) and 

( A u + C ( u ) + w , v ) v = O ,  vETuSr.  (40) 

Comparing (8) and (40) it results that A E R exists with the property 

Au + C(u) + w = Au. (41) 

Due to (33) and hypothesis (H1) one has (cf. [12], p. 83) 

w E OJ(u) C fa Oj(x, u(x)) dx 

in the sense that w E LP/(P-1)(fl;RN) and (7) holds. Then (41) and Proposition 
2.1.2 of [12] imply that 

A(u, v)y = a(u, v) + (C(u), v)y + .fo(w(x), v(x))~Ndx 

<. a (u ,v )+(C(u) , v )y+ j~j~ vE V, 

which is just (2). Equality (3) was already proved (see (36)). The formula deter- 
mining the eigenvalue A follows directly from (41). This completes the proof of 
Theorem 1. 

COROLLARY 2. Under assumptions (H1)-(H3) the variational hemivariational 
inequality 

~(u, v) + (g'(u), v)v + h(u + v) - h(u) + J~ j~  u(x); v(x)) dx >/0 

for all v E V with (u, v)y = O, 

has a solution u E V with II llv - -  ~. 
Proof. This result has been obtained subsequently in the proof of Theorem 1. 

More precisely, it is deduced from the inequality preceding (39). 

EXAMPLE 3. (a) For the sake of simplicity assume that on a Hilbert space V, 
a : V • V ---+ ~ is coercive, i.e. 

 llvll , v E v 

where ~ is a constant > 0, that C = 0 and that j  : ~2 • ~N __+ R verifies (HI) and 
the following generalized sign condition 

f (w(x), u(x))RNdx < O, (42) 

for all u E Sr and for w E LP/(P-1)(f~;R N) satisfying (7). Then (H2) holds with 
g = h = 0 and (H3) is also valid because, by (42), A0 in (H3) satisfies A0 < 0~ for all 
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u 6 ST. Consequently, A0 is in the resolvent set of the operator A : V --+ V*; thus 
(H3) is true. Let us observe that different other situations can be treated analogously, 
for example, when A0 is an eigenvalue of A, but with the corresponding eigenspace 
of a finite dimension. This is due to the a priori boundedness ]]u~l]v = r in (H3). 

As a very particular situation of (42) let us consider the case N -- 1 and 
j : f~ • II~ --+ R in the form of a primitive 

L 
t 

j ( x , t )  = f l (x , s )  ds, (x , t )  6 ft x IR, 

with ,/3 measurable satisfying (H1) with fl in the place of w. Then the sign condition 
assumed by Chang [15] in Theorem 5.5, namely 

j ( x , t ) > O ,  t < O ;  ~ ( x , t ) < O ,  t > O ,  (43) 

where 

Oj(x , t )  = [ j (x , t ) , j ( x , t ) ] ,  (x , t )  6 f t x  IR, 

is less general than our assumption (42) even in this particular case. Note that (43) 
was written with the opposite signs in j ,  ~ in comparison with Chang [15], Theorem 
5.5, because the functional J in (11) corresponds to Chang's notation with - J .  

(b) Concerning hypothesis (H2) the convexity condition (6) relative to the sphere 
S~ is in fact a fairly weak requirement for the function h : V --+ R. For instance, 
let us put h = constant = ko on ST and h = any function ) ko on V\S~.  Then (6) 
is verified and h is 1.s.c. on S~. 

3. Multiplicity of Solutions. A Special Case 

In this Section we investigate, under certain additional symmetry assumptions 
the multiplicity of solutions (u, A) 6 V • R, with [lullv = r, for the following 
eigenvalue hemivariational inequality on the sphere S~, related to the problem of 
the previous Section: 

Find u 6 V and A 6 IR such that 

{ faj~ >. A(u,v)v, 
H I v  = 

v~V, (2') 

(3) 

The data ~ and j in (2') have the same meaning as in Section 1, but here C 
stands for a real function C : S~ x V ---+ IR. A weak kind of compactness assump- 
tion for C is hidden in the hypothesis below. No continuity assumption is necessary. 
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(H~) There exists a locally Lipschitz function f �9 V ---+ R, bounded on S~, 
satisfying 

C(u, v) ) f~  v) for all u E S~ and v E V with (u, v)v = 0 
and 

{ z E V * : z e O f ( u ) ,  n E S t }  
is relatively compact in V*. 

Hypothesis (H3) is replaced by 

(H9 for every sequence {u,~} C S~ with u~ --+ u weakly in V, for every 
z~ E Of(u~) with 

+ u )v e R, 
where c~0 is some real number, and for every w E LP/(P-1)(~, ]R N) verifying 
(7) such that (A - AoA)u~ converges in V*, for ,~0 as in (H3), there exists a 
(strongly) convergent subsequence of {un) in V (thus in S~). 

In addition, we suppose a symmetry condition. 

(H4) j is even with respect to the second variable y E R N, i.e., 
j (x ,  y) = j (x ,  - y )  for all x E ~,  y E RN; 

f is even on the sphere S~., i.e., 
f (u)  = f ( - u )  for all u E V with [[uliv = r. 

Our multiplicity result concerning the eigenvalue problem (20, (3) is formu- 
lated as follows. 

THEOREM 4. Assume that hypotheses (H1), (HI2), (HI3), (144) are fulfilled. Then the 
constrained eigenvalue problem (2'), (3) admits infinitely many pairs of solutions 
{(• C S~ • Rwith 

for some z~ E V* and wn E LP/(P-0(fh IR N) satisfying 

z~ E Of(-t-u~), n/> 1 (44) 

and 

wn(x) E Oj(x,+un(x)) fora.e .x  E f~,n~> 1, (45) 
Proof. Consider the locally Lipschitz functional F : V --+ ~ given by 

F(u) = (1/2)c~(u, u) + f (u)  + J (u) ,  u E V, (46) 

with J : LP(Q; IR N) --+ IR described by (11). From (H4)  it follows that F is even 

on S~ 

F(u) = F ( - u )  for u fi V with I b l l v  = r- (47) 
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As in (14) we check that F is bounded below on S~ 

F(u) > Co, u (48) 

for some constant Co. 
Let us now show that the Palais-Smale condition holds on S~ (in the sense 

of Chang [15]). To this end we recall that the generalized gradient O(FIs~)(u) at 
u E S~ is expressed by 

O(FJs~)(u) = { J  - r-2(J,  u}vAu; J E OF(u)}. (49) 

According to (49) it suffices to show that if {v~} C Sr is a sequence for which 
there exists a sequence { J~ } in V* with 

OF(v ) (50) 

and 

Jn - r2(Jn,  v~)vAvn -+ 0 strongly in V*, (51) 

then {vn} contains a strongly convergent subsequence in V. 
From (50), (51) and (46) and the formula for the generalized gradient of a sum 

([12], Proposition 2.3.3) one deduces that two sequences {z~} and {w~} in V* can 
be determined such that 

Zn E Of(v~) (52) 

O(JIy)(v ), (53) 

Avn + Zn -[- Wn -- r2(Avn + zn + Wn, Vn}vAvn --+ O. (54) 

Since ]Iv~iIv = r we can extract a subsequence again denoted by {v~} such that 

v~ --+ u weakly in V, (55) 

for some u E V. As in the proof of Theorem 1, we can choose subsequences of 
{z~} (cf. (Hi)) and of {w~} for which one has 

z~ -+ z strongly in V*, (56) 

wn ~ w stronglyin V*, (57) 

with z, w E V*. Additionally, we can suppose that 

{a(vn, v~)} is convergent in R (58) 

(Zn Jv Wn, Vn)V --'+ (Z -Jr- W, U}V. (59) 

Due to the upper semicontinuity property of the generalized gradient (cf. [12], 
Proposition 2.1.5) relations (52)-(54), (59) and hypothesis (Hi) yield 

z E Of(u) ,  (60) 



174 D. MOTREANU, P. D. PANAGIOTOPOULOS 

w E O(dlv)(u ). (61) 

From (61) we deduce as in the proof of Theorem 1 that w satisfies (7). Relation 
(54)-(59) allow us to derive that 

(A - AoA)vn converges strongly in V*, (62) 

with A0 obtained from (58), (59) as required in (Hi). Now we apply hypothesis 
(H~) with v~ in place of u~. This justifies that a strongly convergent subsequence 
of {vn} exists and thus the Palais-Smale condition for the function F on ST is 
verified. 

For any closed, symmetric with respect to the origin, subset S of ST, let us 
denote by 7(S) the Krosnoselski's genus of S. Namely, 7(S) is the smallest integer 
k/> 0 for which there exists an odd continuous mapping from S into ~k\{0} (see 
Rabinowitz [16]) for more details). We consider the following class of subsets of 
the sphere ST 

l~n = {S C S~ : S closed, symmetric with respect to 0, 

with T(S) >/ n}, n>t 1 (63) 

and we form the corresponding minimax value of F over I~ 

/3~ = inf maxF(u),  n/> 1. (64) 
SEFn uES 

It is clear that each class F~ contains compact sets, for instance S~ O V~+I with 
V~+I and (n + 1)-dimensional linear subspace of V. In view of (48) it follows then 
that each/3~ is a real number. 

The Palais-Smale condition and property (48) are the only requirements which 
are necessary to apply Theorem 3.2 of Chang [15]. This ensures that 3~ E k given 
by (63), (64) are critical values of F on ST. Hence there exists a critical point un 
(in fact •  by (47)) of F, i.e., 

0 60F(-4-u~) (65) 

with F(-t-u~) =/3~. Recalling now (49) we can express (65) in the form 

a ( iu~ ,  v) + (z~ + w~, v}v = A~(-t-u~, v)v, v E V, (66) 

for A 6 R and for z~, wn satisfying (60), (61) where u, z, w are replaced by 
-4-u~, z~, w~. Arguing as in the final part of Theorem 1 we are led to the inequality 

~(+u~, v) + (zn, v}v + .fo j0(~, +u~; v(~)) d~/> A~(+u~, v)v, 

v E V ,  n/> 1. (67) 

Then hypothesis (H~) ensures that (2') holds for u : +u~, n >/ 1, with A~ obtained 
in a straightforward way from (66). The proof is thus complete. 
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Remark 5. Hypotheses (H 1), (H4) are clearly necessary for this approach. Hypo- 
thesis (H~) is of the same nature as (H3) and it was discussed in Example 3. Hypo- 
thesis (H i) is verified, for instance, for f being the restriction to V of a locally 
Lipschitz function on LP(f~). 

4. Applications 

In several problems in Mechanics and Engineering the cost or the weight of the 
structure is expressed as a linear function of the norm of the unknown function. Thus 
the constraint ]]ullv = r imposed means that we have a system with prescribed 
cost or weight, or in some cases energy consumption. The stability analysis of 
such a system involving nonconvex nonsmooth potential functions (called also 
nonconvex superpotentials [1]-[5]) leads to the treatment of an eigenvalue problem 
for a hemivariational inequality on a sphere of given radius. 

(i) Nonconvex semipermeability problems. In [17] P. D. Panagiotopoulos has 
shown that semipermeable membranes with nonmonotone possibly multivalued 
"flux-force" laws in Onsager's terminology holding on fY C f~ C R 3 lead to 
hemivariational inequalities of the type (2) with C = 0. Form a(-, .) results from 

o l  
the Laplace operator, u = 0 on the boundary, V = H  (f~), p = 5, for instance, 
for f~ C R 3 (Sobolev compact imbedding), and a(. ,  .) is coercive. According 
to Kom's inequality for V we may consider that V is endowed with the norm 
a(u, u)U2. Then condition (3) becomes a constant energy condition which may 
represent the cost of the semipermeable membrane. The semipermeability condition 
is assumed in [7] to be derived by a superpotential j in the form of a primitive 
of a function/3 E Llo~(R ) satisfying (43). Thus the eigenvalue problem (2), (3) 
may be formulated. It arises when someone wants to investigate the stability of the 
membrane due to physical instabilizing effects (semipermeability conditions) under 
the condition of given cost. According to Example 3 Theorem 1 holds concerning 
the existence of solution. If moreover, the symmetry condition (Hi) holds Theorem 
4 applies concerning the multiplicity of solutions. We refer further in this context 
to Example 3 in Section 2. 

(ii) It is analogous the case of nonlinear network problems of given cost. It is 
shown in [9] Section 5.5.5 that this problem leads to a discrete hemivariational 
inequality having an eigenvalue problem on a sphere of the type (2), (3) with 
C = 0. We proceed as in the previous application and we apply Theorems 1 and 4. 

(iii) The general case of C ~ 0 we have treated in Section 2 corresponds to the 
following mechanical problem. We consider adhesively connected von K~rn~aq 
plates f~, i = 1,. �9 p, where the adhesive bond between them is expressed by 
means of a superpotential relation of the type (7). The plates are fixed along their 
boundaries Fi. It has been shown in [18], [19] that the equilibrium state of such a 
structure is governed by a hemivariational inequality whose left hand side coincides 
with the left hand side of (2) and in the fight hand side the term (f ,  v) appears 
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expressing the work of the given loading f .  The corresponding eigenvalue problem 
on the sphere has the form (2), (3) for V = V1 •  x Vp, V~ = {v~ E I12(~)]vi = 0 
on Fi }, where p denotes the number of adhesively connected plates and in the right 
hand side the term A(Bu, v )v  appears, where B is a linear compact symmetric 
operator. For the exact expressions of a( . , - ) ,  C(.) and B we refer to [1] p. 228. 
Due to the presence of B the proofs of Theorems 1 and 2 need a minor modification. 
Note that the existence results given in Sections 2 and 3 do not need the verification 
of any coercivity and pseudomonotonicity property as in [1], if (H1), (H2), (H3) 
are verified. We can assume that the adhesive forces fulfill (H1) and we can easily 
verify hypothesis (H2) with h = 0 and with (4) holding as an equality, where 
9(') = �89 G(.))  (cf. [1], p. 255). Moreover (H3) is also fulfilled, where p 
results from the compact imbedding H2(ft)  C L ~ ( ~ )  (see in this context also 
Example 3). 
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